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Resume of previous lecture 6

¥ Hebbian-type rules are biologically plausible and
motivated

¥ Ocular dominance Is a prominent example which can
be modelled with Hebb rules
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8 Plasticity and Learning
v 02. May Hebb Rules, PCA
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Hebb Rules

¥ Donald Hebb (1949): If input from neuron A
contributes to firing of neuron B, the synaptic
strength / weight w from A to B should be
strengthened.

¥ Basic (linear) Hebb rule for one pattern:

T, aw _ F(vu) =vu
dt
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Recall firing rate equation

Fir. Rate eq.: r av _ v+ F(W*U)
dt
dv N
: . T, —=—-V+W*u
¥ Linear version: dt

has strong deficiencies (unlimited growth, 2" order
statistics) but for the moment is easier to handle.

¥ Hebb learning is much slower than firing dynamics,
hence r,, >> 7. and the firing dynamics can be assumed
In equilibrium for Hebb learning, 1.e. v =w™*u
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Hebb Rule for equilibrium firing

v Obtain TWC;—VtV: vu=(uu’)*w =Q *w

v (uu') is an outer product, i.e. forms the input corre-
lation matrix Q with components Q;; =(uu’); =u;u;
¥ If we have an ensemble of p input patterns, these can be

presented one after the other (sequential learning), or, almost
equivalently, —as a thought model — in parallel, which leads

to averaging <()>= 1 S () with
dw dw,

N
_ HipH —— HoS * = =
TW_dt =<Vviu® >=< Q" >*w Of ¢_ - =< v u{ >—Z<Qk‘{ >Wi
i=1
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Unlimited growth of |wj

- Multiplying* the Hebb rule . W _ y, with w:

dw/ dw dt | 2
" g erﬁ*w = (Hebb) = 2vw *u = (Fir.Rate) = 2v°> 0
l.e. the length (norm) of w will increase in every
learning step, sequential or parallel, (other than in
trivial cases v=0) . Since v=w>*u «|w|, these
Increases will add up unlimitedly.

¥ This Is a consequence of the linearization of the
activation function F. If F saturates, growth is limited.

T
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The Covariance Rule

¥ The basic Hebb rule can be interpreted as modelling
the difference In activity against a base level. In this
case, the mean <u>=0.

¥ If <u>=0, we s(lijtract It as a presynaptic threshold,
W

arriving at prale viu-<u>)=((u-<u>)u')*w
v Since C=<(u—<u>)u-<u>)" >=<(u-<u>)u' >
IS the Input covariance matrix, we get for <u> = 0 the

covariance rule 7, Z_W ~C*w
t
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Ex 1

v a) Show <u-<u>)(u-<u>)" >=< (u-<u>)u’ >

¥ b) Show that the same effect of covariance
normalization can be reached by subtracting a
postsynptic threshold, 1.e. show that

dw

T ——=(V—<V>)U

" gt ( )
also leads to

TWZ—Y[V:C*W
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Solution of Hebbian dynamics

¥ The Hebb rule (pattern-averaged or not)

dw . where Q is regarded as a

g T special case of C, can be
solved by eigenvalue decomposition of C with

elgenvalues A; and eigenvectors eJ
w(t) = Z(e’*w (t=0)) e’ exp(—‘t)

¥ The & *w (t =0) are the prOJectlons of the
Initial weights on the eigenvectors.
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EX 2:

v Show that the covariance rule

7,——=C*w
dt

has the solution

w(t) = Z(e‘*w (t=0)) e exp(

)
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Long-time development

¥ If the initial weight vector (t=0) has
components In all eigenvector directions, the
long-time development will be governed by

the largest eigenvalue, I.e.

w(t) —=2 5 el=m exp(imaxt)

TW
¥ The eigenvector with largest eigenvalue Is

called the principal eigenvector.
v Clearly, |w| will grow unlimitedly.
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Principal component analysis (1)

¥ The eigenvectors of a covariance matrix (1) select the
directions of an approximative Gaussian multinomial
distribution. Large eigenvalues correspond to large
variances. Example: Gaussian data:

“1 ) H"'l
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Eigenvalues of Covariance Matrix
~ Eigenvalue conditions; Av=Cv =) uut v
~ Multiply from left with v: )

A=Vv'Av=v'Cv=>» viu“u“ v = > (u*' v)2>0

¥ The last sum is called a ,,perfect square*

v Hence the eigenvalues of a real-valued
covariance matrix are not negative.
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Principal component analysis (2)

¥ Note that If the distribution of patters Is non-
Gaussian, a best Gaussian fit to the data 1s assumed
implicitely by PCA.

¥ Non-Gaussian distributions have central correlation

moments of higher order, < (U—<uU>)">#0
for some n=34,....

v These are not modelled by PCA. Neural models with
nonlinear activation function model those so-called
higher order statistics. (higher than 2)

Andreas Wendemuth, Otto-von-Guericke-Universitat Magdeburg, SS 2006

g -



Example: ocular dominance (1)

v Consider a single layer 4 cell which receives input
from 2 LGN afferents, associated with the 2 eyes
(R,L), with activities u. Both eyes are statistically
equivalent.

v Cov.: Q=< uu' >= (<URUR > <Ugly >):(qs qu

<Ullg > <udu > o  Us
where ,,S“=Same and ,,D*“=Different

vPCA e =(1) ; 4 =q+0p ¢ =(l-1) 5 4 =95-0qp
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Ocular dominance (2)

¥ If correlation between eyes Is positive, g > 0. Then
the principal eigenvector is ' =(11) ; 4, =05 +q,
representing the combined weight vector w; +w,

v After some Hebbian Learning time, the weights will

be proportional to w, +w, , whereas the other
elgenvector Is suppressed, 1.e. w; —w, — 0

¥ This means that both eyes contribute equal
Innervation, so no ocular dominance occurs.
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EX 3

v Derive the ocular dominance behaviour with
Hebbian learning in the simple presented
model.
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Ocular dominance with saturation (3)

v With the (biologically
plausible) saturation of
weights O<w<w,,,, the oaf
outcome of Hebbian learning
depends on the initial overlaps
e*w and the products At:

v If ,,few" time has elapsed and
saturation is already reached, 0t
the outcome is rather
determined by the initial
overlaps than by the largest o 0z 04 05 OF
eigenvalue [here = (1,-1)]: W1/ Wmax
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The Oja rule (1982)

¥ The Oja rule affects weight normalization by only
requiring information ~_ dw _ .~ .
local to the synapses, Y odt

but ”w (multiplicative normalization):

¥ The weights grow as:
2
T, djwl” _ ZTWd—W*W = (Oja) = 2vw *u — 2av° |w |°
dt dt

= (Fir.rate) =2v°(1l—a | W [*)

so finally weights are normalized |w [*=1/«a
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Oja Rule (2)

v Expressing the Oja Rule fully in terms of w:

TWE = (C —a(w' *C*W)I)*W
¥ This is highly nonlinear in w. Writing w in C-eigenvector
coordinates gives for component k:

dw
r, dtk = [/lk —az /ijf)wk
J
¥ Since the sum term is the same for all components k, the

maximum in () will be at component k with maximum A. So
the Oja rule selects the principal component of C as well.

521
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Oja rule (3)

¥ After some time, all components other than w,
have been suppressed, and we obtain
dw,
Y odt
~ Even though the factor A , would increase w,,
this increase Is brought to a halt by the factor
(1— awf) which will not allow for a further
Increase after |w |’=1/« ,which we saw already.

= (1- aw? J,w,

T
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Subtractive Normalization (1)

¥ A biologically non-plausible (non-local) way
of suppressing the principal eigenvector et is
to force the solution to be orthogonal to it:

T, Z—"t" = vu —v(e™*u)e’ [subtr. normalization]

¥ The orthogonality is strictly enforced:

] d(e'w)

" =ve'u—v(e™u)(e'e') =0
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Subtractive Normalization (2)

¥ Writing w and u in C-eigenvector coordinates
gives for component k=1: _aw,
Yodt
hence standard Hebbian behaviour. Of course an
Initial component of w In these directions Is
required.

¥ For the component k=1 we show the behaviour as
follows:

— ﬂ*ka !
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Subtractive Normalization (3)

¥ Writing all vectors w,u with a component in el —
direction and a component () orthogonal to el gives:

lge 1 I
T, d [(e V\;)te v ] =v[(e™u)e’ +u']-v(e™*u)e’ =vu'

~ Hence | d(e™wyet| 0 .i.e. the component of the
! dt

initial weight vector in el —direction is never changed.
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Multiple Subtractive Normalization (4)

¥ Subtraction of the k largest eigenvectors can
be enforced by setting

¥ This can be used to have several neurons be
sensitive to the largest, 2" largest, ... , k"
largest eigenvector.
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Subtractive Normalization combined
with Oja rule (1)

v Combining both rules gives:

T, o(lj_vtv =vu —v(e™u)e' —av’w
¥ Again, we write this rule in C-eigenvector
coordinates. k=1 gives: . MW __ .2,
Yodt
1.e. the first component will decay exponentially.

¥ This 1Is better than the former subtractive normal-
Ization where the initial value w,(t=0) remained.

527
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Subtractive Normalization combined
with Oja rule (2)

v Generally:

r, o(lj_\iv = (C—av’)w —v(e™*u)e’

¥ In C-eigenvector components, k # 1 :
dw
r, dtk = [/Ik - az ljwﬁ)wk
J
has Oja characteristics.

v Summary: exponential decay In first ev,
selection of 2" largest ev, weight normalization.

@28
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Ocular dominance with subtractive
normalization + Oja(1)

v Recalling Q=<uu’ >= (<URUR > <UgU_ >]:(qs qu

<Ulg > <Ul_ > o s
¥ \We use subtractive normalization + Oja with

dw 1
Ty = VU= 0.5v(up, + uL)(lj — VW

¥ The time-discrete version is:
At

1
AW =— vu—O.5v(uR+uL)[J—av2W and V=Uu*w
T

W
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Ocular dominance with subtractive
normalization + Oja (2)

¥ Choose different w(t=0) and let the sequence
of (Ug, U, ) be mean-free (< u >=0) to avoid the
need for covariances:

v U,=1,2,1,-1,-2,-1 and cyclic repetition
u, =2,1,-1,-2,-1,1 and cyclic repetition

¥ This gives a reasonable g =2 and g, = 1, and
< Ui >=<u, >=0. At

— =1/100

v Let

W
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Ocular dominance: Initial conditions 1:

v Let =1 which should lead to |w|=1, I.e. with
suppression of first ev., to w, = -w, =+0.7

v w-plane (left) wW-W, / Wy +W, (right)
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Ocular dominance: Initial conditions 2:

~ Initial condition = first ev. : since (ug, U, ) have fluctu-
ations, this leads, after a long time, to 2" largest ev.

v w-plane (left) wW-W, / Wy +W, (right)

00 1000 1200 1400 1600 1800 2000
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Ocular dominance: Initial conditions n:

v Live demo !!!
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Ex 4

¥ Play with the combined Subtr. Normalization/
Oja rule in provided matlab programme!

v Examine the role of:
— Initial w-values
— Initial w-normalization b
— Final w-normalization a
— Removing Subtr. Normalization and/or Oja terms
— Changing the time factor

Andreas Wendemuth, Otto-von-Guericke-Universitat Magdeburg, SS 2006

g >



Resumé: Hebb Rules and PCA

v PCA forces multinomial Gaussian distribution on data, 1.e. IS
sensitive only to 2"d order statistics.

v Basic Hebb Rule selects for w the principal eigenvector of the
data‘s correlation matrix, w grows unlimitedly.

¥ Subtractive normaliz. suppresses the principal ev.(s)
v (Qja‘s rule normalizes w.

v Combined rule still works locally and biologically plausible, if
prior knowledge exists about desired w-behaviour suppression.

¥ Simple one-cell ocular dominance model can be realized.
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