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Our goal is to understand complex observations in terms of few causes

1 Introduction to causal models

Observation Internal model
The structure of some data distributions suggests discrete underlying causes. In the example from the (e.g., |mage) (mOdeI causes)
book, there are clearly two clusters of data points u. A more compact and causal description of the same
data would involve a causal variable v, which in this case would take one of two values, A or B. The value
of v cannot always be unambiguously determined.
In probabilistic recognition, we want to know the probability that a given data point u was caused by <+ .
cause A or by cause B. In deterministic recognition, we simply want to know the most likely cause, A or
B. <4 [ )
We consider models that infer causes without supervision or additional information. The success of such
models is judged by their ability to reproduce (and thus ’explain’) the input data. We iteratively adjust
the parameters of a generative model until we obtain a good match between observation and reproduction. <+ °
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Recognition model

Recognition A

P[Alw;G]  P[B|u;G]

1.1  Generative model

Prior distribution of causes Plv;Gl = with v=Aor B and Z'yg =1
— B2 — By
Generative distribution (given cause) plulv:G) = 1 exp | — (= 917) + (u2—g5"")
P23 2848
Parameter set G ={v4.94.95 24,25}
Marginal distribution plu:G] = z plulv; G] Plv; G)

v

The structure of our generative model reflects heuristic information (prejudices, assumptions, analogies,
marginal generative prior

plulA; G| A;G

plu; G G Pl Gl' P
plu|B; G ’B;G

1.2 Recognition model
Once the generative model is optimized, we can use it to classify new observations in terms of probable

causes, in other words, we can use it for "recognition” or "classification” problems. To this end, we use
Bayes' theorem to compute the most likely cause, given a particular observation:

Plv|u; G = R[ﬂ';_[g{_g]['ig

Not all situations are invertible in this way, that is, we cannot always compute the conditional distribution
of causes from the conditional distribution of events.
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2 Expectation maximization

We introduce " expectation maximization” as a method for adjusting a generative model G. Our generative
model includes two causes, each producing Gaussian-distributed observations. In this case, G comprises
the means g4 p and variances ¥4 g of the conditional distributions plu|v; G] and the prior probabilities
plA|G] =4 and p[B|G] = v5.

If we knew which observation stems from which cause, it would be a simple matter to compute the
parameters in G. As we do not have this information yet, we instead use the classification distribution
Plv|u; G] as a current best guess.

The EM algorithm consists of two alternating steps, the E (expectation) step of inferring "probable
causes” from the classification distribution P[v|u;G], and the M (maximization) step of computing pa-
rameters G from weighted averages over observations u. It is far from obvious that this process (which
seems suspiciously circular) will converge to an optimal generative model G!

G ={74.94.95.24,25}

PlAlu;G]  P[Bu:G)
G ={71,92.95:24, X5}
PlAlu;G]  P[Blu;G]
G ={74.94.95.24,25}
P[Ajw;G]  P[Bu:G)
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Example: 1D observations with two Gaussian causes

Expectation step
plulv; G] Pv; G]

Plv|u;G) =
fots; G plu; Gl
Maximization step
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G={74,94,98:24, 28} — P[A|u;G] P|[B|u; G]

2.1 Expectation step

Probability of observing u, given cause A or cause B:

(u—ga)?

1
PO = s e""(‘—zzzA )
_ 1 " _(u—gB)? _ .
p(u|B) = \/%—Ege P( ——2):% ) 1—/p5(u)d1

Joint probability of observing u and it being due to cause A or cause B:

I=/pA(u)du

p(u; A) = 74 p(ulA) = [ [ pwidydu
p(u; B) = (1 —~4) p(u| B) L= // p(u; B) du
Total probability of observing u (due to either cause).
p(w) = p(us 4) + p(u; B) 1= [ [ stw)u

Conditional probability of cause A or B, given an observation u:

Pl = 25D p(Blu) = 255)
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2.2 Maximization step A
~ - [\ lter10
Given a sufficiently large set of observations u, any average taken over this set will be weighted by the |
probability density of observations p(u), as more probable observations will contribute more samples to a0 /
the set. We can use these weighted averages to estimate model parameters. ’; \;: i
3 %0 >
Weighted averages over conditional probability of causes: 4 4 A
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3 Mixture of Gaussians

A generative model with N, separate Gaussian distributions is called "mixture of Gaussians”. For
observations u with N,, dimensions, the model is defined by

Generative model

Plv;G] = plulv;G) = N(u; g,. %)

1 [u—gl*
N(u;9,%) = —7= exXp | —
(wi9,X) = o sywe7a o 2%
Here, N() is an N,-dimensional Gaussian distribution with mean g and identical variance ¥ in all
dimensions. Once this generative model has been optimized, the associated recognition model is given

by:

Recognition model

Yo N(u: gy, 50)

Elshe )= > Yo N(u;9,,30)

Observations

-

True causes

Mixed Gaussians N =5




3.1 Sparseness of causes

In a "mixture of Gaussian” model, the causes are discrete and therefore sparse. In the degenerate case

of ¥ — 0 the recognition model becomes increasingly deterministic.

4 Factor analysis

‘What if our causes are continuously distributed? The illustration on the next page suggests that obser-
vations are distributed along a line. We can capture this by postulating a normal distribution of causes

v and generative distributions of which the mean depends linearly on v:
Generative model

u = {uy,uz, uz}

P3G = = exp (~v7/2)

v 1 (m-vg)?  (u2-vg)®  (ug—vgs)®
PGl = T O ( 2%, 2%, 255 )
Recognition model
Ol — 1 v = Wi(w)]? vz — Wa(u)]?  [vs — Wa(u)]?
PiuiCl = G, v, v, P (' l 2\141. - 2\1; - 2\1;

Wi =wnuy +wipuz +wizug
Wa = way uy + wap g +wag ug
W3 = wsy w1 + wa2 uz + wag ug

4.1 General case

)

In general, factor analysis uses an N,-dimensional vector of causes v, drawn from a Gaussian prior
distribution. The generative distributions are also Gaussian, with a mean that depends linearly on v and

variances that are fixed.
Generative model
plv;G] = N(v;0,1) plulv:G] = N(u;G - v, %)
1 1 =
N(u:g, %) = N oL e exp (_E (u-g)-x7* '("‘-9))

2=diag(£h-‘-r£’-) z_1=diag(l/zll'°-)1/zNu)

Recognition model

plv|u;Gl = N(v; W - u, ¥

-x:=(r+d’-z:-l-a)" W=w.6T.x"!



5 Sparse causes of images (Sparse coding)

5.1 Sparse distributions
A distribution is called 'sparse’ when it generates values near zero and values far from zero more often

than a comparable Gaussian distribution. It follows that a 'sparse’ distribution generates intermediate
values less often than a Gaussian distribution. Distributions of this type are also called "heavy-tailed’.

As an example, consider the following three distributions:
Gaussian p(v) x exp (-92—2) k=0

Double exp p(v) o exp (—|v|) k=3

1
Cauchy P(”)“mz' k=00

4.2 Degenerate case: Principal components analysis

In the degenerate case of ¥ — 0, the distribution of causes becomes sparse’. This case is better known
under the name of "principal components analysis”, or "PCA”.

5.2 Causes of natural images
To model the generation of natural images, we can choose causes of different complexity.

5.2.1 Single pixels

For example, we can apply one generative distribution to each image pixel, specifying its luminance
value. In this case, we assume as many ’'causes’ as there are pixels. For natural scenes, an exponential
distribution is more appropriate than a Gaussian distribution.




Figure 1. Images of the natural environment,
such as this view of a log resting on a stony
embankment (top), exhibit a surprising degree
of statistical similarity. To investigate these
qualities, the authors had first to remove the
effects of the photographic process from their
images, yielding estimates for the actual bright-
ness (luminance) in each pixel. Because lumi-
nance spans an enormous range—it varies from
about 100 to 40,000 candles per square meter
in this image—linearly scaling these values to
the shades that can be printed makes the
scene look strangely dim and stark (lower right).
Histograms of pixel intensity (yellow panels)
show that the distribution of luminance values
is short and wide in a light region, whereas it is
narrow and peaked in a dark area. Summing
the results from the three sample regions
(white boxes) produces a distribution skewed
toward low values, one that matches the shape
of the histogram obtained for the image as a
whole.

6 Sparse version of factor analysis

Olshausen and Field (1997) suggested a non-linear version of factor analysis. In this approach, the
generative distribution of u given v is still Gaussian, but the prior distribution over causes is sparse:

N,
plv;G] H exp|—av,|| plujv;G] = N(u; G - v, X)

a=1
There is no simple way to invert this generative model into a recognition model. In consequence, there

is also no simple way to adjust the parameters of the generative model. To iterate, E and M steps,
Olshausen and Field used a neural network between u and v layers to set recurrent weights G.

GTT

Figure 10.5: A network for sparse coding. This network reproduces equa-
tion (10.31) using recurrent weights —GT - G in the v layer and weights connecting
the input units to this layer that are given by the transpose of the matrix G. The
reverse connections from the v layer to the input layer indicate how the mean of
the recognition distribution is computed.

5.2.2 Filters

A slightly better way to generate natural images is to use a population of linear filters. Filters overlap, so
that each contributes to many pixels. Formally, we treat the image as a high-dimensional vector u, with
as many components as there are pixels. To keep things simple, we ensure (u) = 0. In this case, each
cause v is associated with a particular direction g, in u-space, which specifies ratios of luminance values
for different pixels. By choosing an appropriate direction, we can generate any pattern of luminance
values we choose.

pixel-space
pattern g
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The true causes of images are surfaces and objects, not low-level causes such as Gabor patterns. Pre-
sumably, the fact that the generative model has only one level biases the results towards Gabor-patterns.
Moreover, if one analyzes the natural images in terms of Gabor patterns, one finds that different causes
(patterns) are not actually independent. This suggests that low-level causes such as Gabor patterns are
in turn caused by higher-level causes (more complex patterns, surfaces, objects, etc).
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Figure 10.11: A) Gray-scale plot of the conditional distribution of the output of
a filter at the finest spatial scale (v) given the output of a courser filter (v,) with
the same position and orientation (using the picture in figure 10.9A as input data).
Each column is separately normalized. The plot has a characteristic bow-tie shape.
B) The same data plotted as the conditional distribution of In|v.| given In|v,|.
(Adapted from Simoncelli & Adelson, 1990; Simoncelli & Schwartz, 1999.)
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|Ovetﬂ| stimulus / response uncertainty ]
Figure 2. Sensory neurons transmit information when their responses

H(s) allow an observer to reduce uncertainty regarding the nature of the

stimulus. A, Diagram illustrating relationship between uncertainty and

Respo uncertain! H(I') information. The first recrangle symbolizes the total uncertainty pn tin

the set of all stimulus-response pairings for a given neuron; the second
H(SII’) [ Cc.SU. I Iml CA.U. l H(rls) rec um_g.":- represents the Mv.scncr'wpm»rj un(url..unl‘\ .l-lkl\ll.lhc stimuli |||.
a natural-vision movie; the third rectangle represents the uncertainty in the

|(S,I') observed responses of the neuron, These uncertainties can be translated
into entropies by means of Equation 5, The single number that summa-

rizes overall stimulus uncertainty is the total stimulus entropy, H(s), while

the total response entropy is H(r). The remaining rectangles are the
conditional stimulus uncertainty (C.S.U.) and the conditional response
uncertainty (C.R.U.) (quantified by the entropies H(slr) and H(rs), re-
spectively). The gray-shaded region denotes correlations between the

total stimulus and the responses of the neuron: this correlation is what allows
P. information, /(s, ), to be transmitted. If every stimulus evokes a unique
) and repeatable response, then response uncertainty will be entirely de-
termined by stimulus uncertainty, In this case the gray-shaded region

would completely overlap both stimulus and response uncertainties. In

real neurons, repeated presentation of a stimulus produced a range of

responses, so H(r) > I(s,r). The remaining uncertainty, H(rs). is attrib-

utable to noise in the encoding and transmission process. B, Grayscale

rastergram of single neuron responses to repeated movie presentations.,

Rows represent repeated presentations of the movie, whereas columns

represent individual time bins. Each time bin contains a single response

word whose identity is determined by the number of action potentials

(identity is indicated by the shading of cach bin). The total response

entropy, H(r), is a function of the frequency with which cach word is

observed, p, ™, €, Magnified view of responses to one stimulus repeated

2 k 20 times. Variation in the identity of the response words is clearly visible
-g p] across trials and is quantified as noise entropy, H(rs = k). Noise entropy

is a function of the probability that cach word oceurs in response to the

kth stimulus, p}.

k-th time bin

7 Neuronal coding

We often characterize neurons in terms of simple, Gabor-like receptive fields. This seems to suggest
that neurons decompose natural scenes in terms of Gabor-like 'causes’. However, a close look shows
that neuronal responses to natural scenes are not at all well explained by Gabor-like receptive fields.
(Their responses to laboratory scenes such as bars and gratings are explained much better!). Apparently,
neurons even in early visual areas represent more complex causes than Gabor-patterns.
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Responses to natural scenes. Context in natural scenes sparsifies responses of V1 neurons. Shown is the average response of a neuron to multiple
repetitions of a natural vision movie played just within the receptive field of the neuron {top) or the same movie but with additional spatial context
extending into the receptive field surround (bottom). Context appears to make the neuron more selective to certain episodes within the movie
sequence, Taken from [42°7], with permission, Copyright 2002 by the Society for Neuroscience.



