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Goals: Credits:

1) Validity of firing rate models Dayan & Abbot, Chapter 6
2) Formalization of firing rate models
3) Example of feedforward network

1 The need to simplify

A typical network of cortical neurons involves at a minimum some millions of excitatory and inhibitory
neurons (150,000 per mm?), each with complex dendrites and axons, with many types of membrane
channels for Nat, K*, Ca?", etc. and receiving input and emitting output through 8,000 synapses on
average. Models of this scale are extremely expensive and unwieldy (many time-scales!). Somehow we
need to capture the function with a smaller model involving fewer dynamic units.

To simplify, we can consider the firing rate of sub-populations rather than the spiking of neurons. For
example, we can consider a cortical column as a single model node. However, we loose effects that depend
on precise spike timing.



2 Firing-rate models

For one such model node, we define the input (pre-synaptic) firing rate vector #(¢) and the output (post-
synaptic) firing rate v(t). The total synaptic current I, mediates between input and output rates. When
can we ignore spikes and use rates? To find out, look closely first at one particular synapse b, with
post-synaptic current K (t) and weight wy, and then at all such synapses together. The total current
produced by pre-synaptic spikes i

i

I,(t) = wy Z K (t—t;) =w, /_ ‘ K (t—7)pp(7)dr (7)) = Z o(r—1t)

I(t) = Z I(t) = Z wy, / K (t —71)pp(7)dr
b b -

where we assume that all synapses are independent. We want, but don’t yet dare, to replace spike train
pu(t) by spike rate u(t).

Upon reflection, we find that we may ignore "spike train variability” when it is smoothed out by (i) slow
synapse potentials K (¢) or (ii) many uncorrelated variabilities. The latter is true only as long a neural
firing remains uncorrelated!
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Figure 7.1: Feedforward inputs to a single neuron. Input rates u drive a neuron
at an output rate v through synaptic weights given by the vector w.

3 Time constants

The synaptic kernel K(t) describes the current pulse at the postsynaptic soma caused by a presynaptic
spike. It reflects the time-course of the synaptic conductance and the passive and active properties of
dendritic cables. A common approximation is a current step followed by exponential decay with time-

constant 7:
1 t
K (t)= — exp (——)
Ts Ts

In this case the total synaptic current can be described by a differential equation:

¢ 1 t
I, = Z wy, / Ko (t —7)up(r) dr K(t) = — exp (—_—)
b J—00 I's I's

Al
Ty I + Z wy, wp
b

a

For an electrotonically compact dendrite, 7, reflects the time-constant of the synaptic conductance, which
may be as short as a few milliseconds (e.g. AMPA glutamate receptors). For a synapse on the distal part
of a thin dendrite, it may be larger. Measured values are typically small (milliseconds).



Having described I in terms of input firing rates u, we need to complete the model by computing the
ouput firing rate v. For constant input currents I, the steady-state firing rate is described by the so-called
"activation function”:

v = F(I)
F(I,) = [Is — 7], ~ = threshold
]
F(Is) = Umaax ,,—s“
II,III'(‘N’l + 15‘

In the general case, when the input current changes with time, we need to consider the somatic membrane
capacitance and resistance, which limit how closely the firing rate v can follow the input current I.
Roughly speaking, v will be a low-pass filtered version of Iy and can be modelled as

dv

g = vt E)

Don’t be deceived by the familiar shape of this equation! Here, v is a firing rate and NOT a membrane
potential. Accordingly, the time-constant 7, is NOT the membrane time-constant. Most network models
use a value of 7,. that is considerably less than the membrane time-constant. More detailed simulations
show that the effective value of 7. depends on the firing-rate regime. Low-pass filtering by the membrane
time-constant can be neglected if the neuron is always firing (i.e., always close to threshold) but must be
taken into account otherwise.
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Figure 7.2: Firing rate of an integrate-and-fire neuron receiving balanced exci-
tatory and inhibitory synaptic input and both constant and sinusoidally varying
injected current. For the left panels, the constant component of the injected current
was adjusted so the firing never stopped during the oscillation of the varying part
of the injected current. For the right panel, the constant component was lowered
so the firing stopped during part of the cycle. The upper panels show two rep-
resentative voltage traces of the model cell. The histograms beneath these traces
were obtained by binning spikes generated over multiple cycles. They show the
firing rate as a function of the time during each cycle of the injected current oscil-
lations. The different rows show 1, 50, and 100 Hz oscillation frequencies for the
injected current. The solid curves show the fit of a firing-rate model that involves
both instantaneous and low-pass filtered effects of the injected current. (Adapted
from Chance et al, 2000.)

4 Compact firing-rate models

We now consider ways of combining our equations for I, and v into a more compact model:

11 lv
7'5( = = Is+Zuv,,u,,:—1s+w-u T,,l:—u—kF(Is)
b

dt B dt

If 7. >> 7, we can replace I, by its equilibrium value

dv
I, = Z wpup =W - U = Ty ((I_II =—v+ F (Z wy, “b) =—v+ F ('w -u)

b b

Alternatively, if 7, << 7,, we can replace v by its equilibrium value F'(I) and use

11
Te (d—; = I, + z{: wyup = —Is +w-u with v = F(I)

In both cases, the steady-state firing rate v is given by

Voo = F <Z wy ub> =F(w-u)

b

These approximations suffice to show the computational potential of network models. More accurate
models would explicitly model individual spikes. However, provided that the spikes in a spiking model
do not synchronize, the predictions of rate models are typically quite accurate.
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Figure 7.3: Feedforward and recurrent networks. A) A feedforward network with
input rates u, output rates v, and a feedforward synaptic weight matrix W. B)
A recurrent network with input rates u, output rates v, a feedforward synaptic
weight matrix W, and a recurrent synaptic weight matrix M. Although we have
drawn the connections between the output neurons as bidirectional, this does not
necessarily imply connections of equal strength in both directions.

5 Feedforward and recurrent networks

In a feedforward network, N, input units with rates w are driving N, output units with rates v, it is
convenient to use vector notation and assemble the synaptic weights w,; (i.e., from input unit ¢ to output
unit o, not the order of indices) into a matrix W. The output rates are then determined by a system of
equations as follows:

1 v
T,»%:*’U%'F(W-u) or T,(;f“:~z()+1 (ZH(,,U>

In a recurrent network, there exist additional interconnections between output neurons, which are de-
scribed by a synaptic matrix M. Matrix element M, gives the weight of the connection from output
unit @’ to output unit @ (again note order of indices). The equations governing this recurrent network
are:

dv dv, , .
no = vt F(Mowt Wew) o mo = vt (Z\/ vor + Zum u,)

In biologically realistic networks, the connectivity matrices W and M exhibits certain patterns, for
example, that weights originating from one neuron must all have the same sign, because individual neurons
are either excitatory or inhibitory (”Dale’s law™). However, connections originating from one NODE (i.e.,
a population of excitatory and inhibitory neurons) can easily have different signs. Accordingly, a rate
model does not have to be constrained by Dale’s Law.



6 Continuous labelling

If a neural population encodes a continuous sensory or motor variable (e.g., a visual orientation, an
auditory frequency, or a movement direction), it is easier to identify model neurons/nodes by their
preferred value rather than by an integer index. In this case, the synaptic matrix is also expressed in this
way. It is often true that the synaptic weight functions depend not on the absolute variable value but
only on differences between such values so that the matrix becomes symmetric. In this case:

Wi = W (0,,0:) = W (0, — 0;) Woor = W (B, 0.) = W(b, —0))

If the number of nodes in a network is large and the density of coverage py is high, we can approximate
the sums in our system equations by integrals:

T,.”’('[(f) — —u(0) +F{,)(, / (W (0,0 u(8') + M(6,6) v(0")] (19'}
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Figure 7.4: Coordinate transformations during a reaching task. A, B) The location
of the target (the grey square) relative to the body is the same in A and B, and thus
the movements required to reach toward it are identical. However, the image of
the object falls on different parts of the retina in A and B due to a shift in the gaze
direction produced by an eye rotation that shifts the fixation point F. C) The angles
used in the analysis: s is the angle describing the location of the stimulus (the tar-
get) in retinal coordinates; g is the gaze direction angle, indicating the orientation
of the eyes relative to the body. The direction of the target relative to the body is

b-l—g



7 Feedforward example: coordinate transform

Reaching movements necessitate coordinate transforms between retinal and body coordinates. For ex-
ample, target direction in body coordinates is the sum of target direction in eye coordinates and gaze
direction in body coordinates.

Visual neurons are sensitive to particular retinal locations; their receptive field is fixed in eye coordinates.
In contrast, neurons in pre-motor cortex depend on the relationship between stimulus and body. With
the head fixed and gaze direction is changed, the tuning curve of these motor neurons remains unchanged.
However, when the gaze direction is fixed and the head is rotated, the tuning curve shifts by exactly the
amount of head rotation. We conclude that the receptive fields of these pre-motor neurons are fixed in
BODY coordinates (not EYE coordinates).

How can visual neurons with receptive fields in EYE coordinates drive pre-motor neurons with receptive

fields in BODY coordinates?

A clue to the solution is the observation of ”gaze-dependent gain-modulation” of visual neurons in area
7a. While the receptive field is fixed in EYE coordinates, the amplitude (or "gain”) of the response is
"modulated” by gaze position.
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Figure 7.5: Tuning curves of a visually responsive neuron in the premotor cortex
of a monkey. Incoming objects approaching at various angles provided the visual
stimulation. A) When the monkey fixated on the three points denoted by the cross
symbols, the response tuning curve did not shift with the eyes. In this panel, unlike
B and C, the horizontal axis refers to the stimulus location in head-based, not reti-
nal, coordinates (s + g, not s). B) Turning the monkey’s head by 15° produced a 15°
shift in the response tuning curve as a function of retinal location, indicating that
this neuron encoded the stimulus direction in head-based coordinates. C) Model



Following Pouget and Sejnowski (1995), we construct an input layer of area 7a neurons whose responses
depend on both stimulus position s (in retinal coordinates) and gaze position g (in body coordinates), as
follows

20°

_ (s __explr(g=v)] (s —¢)?
0= hls =60 = Tt Ty oo (-05)

where £ and + are the preferred stimulus position and the critical gaze position, respectively. These
functions describe a Gaussian tuning for s — £ and a sigmoidal increase in response gain (or amplitude)
for g — «. These neurons are thus "stimulus-tuned” and ”gaze-modulated”.
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Our input layer u models visual area 7a and consists of a population of such gain-modulated units u(&,7),
representing all possible combinations of £ and «. This population feeds via a connectivity matrix w(&, )
into an output unit v, which models a unit in pre-motor cortex. We neglect dynamic effects and consider
only the steady-state response of the output unit, which is given by

Voo = F {pg I / w(€,7) fuls — &g —7) d€ dw]
Motor area (PMC), RFs in body coords
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Visual area (7a), RFs in eye coords

Is it possible to choose a connectivity matrix w(&, ) such that the output response is a function of s+ g,
in other words, to respond to stimulus location in BODY coordinates? To see that the answer is 'yes’,
we change the integration variables as follows:

§—&8—yg

Y—=v+yg

/

Voo = F [ﬂf P~ /w(f — 9.7+ 9) fuls =&+ g,—7) dE dy

We can now see that v, is a function of s+ ¢ provided that w({—g,v+¢g) = w(&,v) (i.e., provided that he
g-dependencies of w cancel). This, in turn, is the case if w is a function of {4+, so that w(&,v) = w(£+7).

w(€,7) = w(€+7)

Voo(s +g) = F {/)s P~ / w(€+7) fuls + g — & =) d§dy
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tuning curves based on equation 7.16 shift their retinal tuning to remain constant
in body-based coordinates. The solid, heavy dashed, and light dashed curves refer
to g =07, 10°, and —20° respectively. The small changes in amplitude arise from
the limited range of preferred retinal location and gaze angles in the model. (A,B

adapted from Graziano, Hu & Gross, 1997; C adapted from Salinas and Abbott,
1995.)

If synaptic weights are given by w(€ + 1, the resulting tuning curve shifts as a function of gaze direction,
but would remain constant if plotted as a function of s+ ¢g. Note that all three peaks occur at s+ g = 0.

Next lecture:

recurrent networks



