$7^{\text {th }}$ Exercise in Digital Information Processing

1. Matrix potention with eigen-values

- Given is a system of order 2 with equation:

$$
\begin{equation*}
y(n)=a_{1} u(n-1)+a_{0} u(n-2)-b_{1} y(n-1)-b_{0} y(n-2) \tag{1}
\end{equation*}
$$

- Sketch an equivalent block-diagram.
- Define two state variables $x_{1}(n)$ and $x_{2}(n)$ and rewrite the system equation for $x_{1}(n+1)$ and $x_{2}(n+1)$
- Solve the system with matrix potention for the variables:
$b_{0}=-3 / 4$ and $b_{1}=1$

2. Stochastic signals and model system

- Given is a system of order 2 with the equation:

$$
\begin{equation*}
x[n]=q[n]-a_{1} x[n-1]+a_{2} x[n-2] \tag{2}
\end{equation*}
$$

All parameters at $t=0$ are zero.
The system is excited with the delta function $q[n]=\delta[n]$.
Furthermore, the values of the autocorrelation are given:
$S_{x x}[0]=\frac{12}{5}, \quad S_{x x}[1]=-\frac{8}{5}, \quad S_{x x}[2]=\frac{26}{15}$.

- Knowing the exication, the model and the values of the autocorrelation, which approaches can be used to estimate a_{1} and a_{2} ? Use them to estimate a_{1} and a_{2}.
- Compute $x[0]$ to $x[3]$ using the system $x[n]$ and the calculated model parameters a_{1} and a_{2}.

- Use a inverse Lattice-structure as given depicted above to test, if this inverse Filter will produce the correct values for $x[2]$.
- Having the model parameters, compute $x[0]$ to $x[3]$ and estimate the autocorrelation values using the consistent autocorrelation estimator

$$
\begin{equation*}
\hat{S}_{X X}[|\kappa|]=\frac{1}{N} \sum_{\kappa=0}^{N-1-|\kappa|} x[n] x[n+\kappa] \tag{3}
\end{equation*}
$$

and the first 4 elements of $x[n]$ to compute $\hat{S}_{X X}[0]$ to $\hat{S}_{X X}[2]$.
Compare the results to the true values of the autocorrelation function.

- Which equation was used to calculate the corrent values of the autocorrelation?

