5th Exercise in Digital Information Processing

- 1. The transfer function H(z) of a system has exactly two poles at $z_{\infty 1} = 1/2$ and at $z_{\infty 2} = 1 + j$. Choose the zeros such that the system is an all-pass filter. Expand the numerator and denominator and check the all-pass properties of the resulting polynomials.
- 2. Sampling (An analog signal f(t) is transformed into a discrete series f[n].)
 - What is the appropriate formular to describe sampling? Why?
 - What is the appropriate formular to describe a sampled signal *f*[*n*] in frequency domain?
 - What is discrete with respect to the sampled signal f[n]?
- 3. Given is the function x(t).
 - Sample x(t) with frequency f_a and transform the result into frequency domain.
 - Plot the resulting spectrum $Y_a[f]$. Using your graph show the minimal sampling frequency f_s with which perfect reconstruction of x(t) is still possible.
- 4. Given is the function $x(t) = \cos(2\pi t)$. The sampling frequency is $f_a = 3/2$. Plot the spectrum of x(t) before and after sampling and after reconstruction. Give the formular for the reconstructed function x(t) in time domain.