$5^{t h}$ Exercise in Digital Information Processing

1. The transfer function $H(z)$ of a system has exactly two poles at $z_{\infty 1}=1 / 2$ and at $z_{\infty 2}=1+j$. Choose the zeros such that the system is an all-pass filter. Expand the numerator and denominator and check the all-pass properties of the resulting polynomials.
2. Sampling (An analog signal $f(t)$ is transformed into a discrete series $f[n]$.)

- What is the appropriate formular to describe sampling? Why?
- What is the appropriate formular to describe a sampled signal $f[n]$ in frequency domain?
- What is discrete with respect to the sampled signal $f[n]$?

3. Given is the function $x(t)$.

- Sample $x(t)$ with frequency f_{a} and transform the result into frequency domain.
- Plot the resulting spectrum $Y_{a}[f]$. Using your graph show the minimal sampling frequency f_{s} with which perfect reconstruction of $x(t)$ is still possible.

4. Given is the function $x(t)=\cos (2 \pi t)$. The sampling frequency is $f_{a}=3 / 2$. Plot the spectrum of $x(t)$ before and after sampling and after reconstruction. Give the formular for the reconstructed function $x(t)$ in time domain.
