$1^{s t}$ Exercise in Digital Information Processing 24/10/2011

1. Signal composition

- Give the definition of a ramp sequence.
- Rewrite the following function as a sum of weighted ramp sequences.

$$
x(n)= \begin{cases}n-1 & 0<n<4 \\ 0 & \text { otherwise }\end{cases}
$$

- Rewrite the following function values as a sum of weighted ramp sequences. Infer the resulting function and plot a graph of the function.

$$
\begin{aligned}
& x(1)=0 ; x(2)=1,5 ; x(3)=x(4)=x(5)=3 ; x(6)=x(7)=1 ; \\
& x(n)=0 \text { otherwise }
\end{aligned}
$$

- Rewrite the unit step sequence as sum of dirac delta sequences. Rewrite the ramp sequence as a sum of unit step sequences.
- Illustrate the dirac delta sequence graphically by using the unit step sequence.

2. Signal Properties

- The following function is given:

$$
x(n)=\left\{\begin{array}{ll}
0 & n<0 \\
(-0.5)^{n} & \text { otherwise }
\end{array} .\right.
$$

Calculate these properties:
(a) the absolute sum $S_{A}=\sum_{n=-\infty}^{\infty}\left|x_{n}\right|$
(b) the discrete sum $S_{D}=\sum_{n=-\infty}^{\infty} x_{n}$
(c) and the signal energy $E=\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2}$

