$3^{\text {rd }}$ Exercise in Digital Information Processing

1. Compute the inverse Z-transform of the function:

$$
X(z)=\frac{z-1}{z-2}, \quad|z|>2
$$

a) Use example 3.5 (page 44) in the book and properties of the Z-transform.
b) Use the residue theorem.
2. Compute the inverse Z-transform of

$$
F(z)=\frac{1}{z^{3}(2 z-1)} .
$$

a) Use the residue theorem. Additionally compute the inverse Z-transform for the case $n<4$ by using the $1 / z$-inversion formular (p.53) and the residue theorem.
b) Use properties of the Z-transform and the relation

$$
X(z)=\frac{1}{\left(z-z_{\infty}\right)}, \quad|z|>\left|z_{\infty}\right| \quad \Leftrightarrow \quad x[n]=u[n-1] z_{\infty}^{n-1}
$$

(Where $u[n]$ is the unit step function).
3. Compute the inverse Z-transform of $F(Z)$.

$$
F(z)=\frac{z}{(z+0.5)^{2}(z-1)}
$$

Use partial fraction decomposition and the following property of the Z-tranform:

$$
X(z)=\frac{1}{\left(z-z_{0}\right)^{k}} \Leftrightarrow x[n]=u(n-k)\binom{n-1}{k-1} z_{0}^{n-k}, \quad|z|>\left|z_{0}\right|
$$

