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Figure 6.3 Three possible Markov models that can account for the results of hidden coin-tossing
experiments. (a) one-coin mogdel, (b) two-coins madel, (c) three-coins model.
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Figure §.4 An N-state umn-and-ball model illusirating the general case of a discrete
symbed HMM.
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7. A, the awwber of sfates iv the wede! (states ayve b dfon )
of interest and may better suit speech applications. We label the individual states as
{1,2,...,N}, and denote the state at time ¢ as g;.

2. M, the number of distinct observation symbols per staje—i.e., the discrete alphabet
size. The observation symbols correspond to the physical output of the system being
modeled. For the coin-toss experiments the observation symbols were simply heads
or tails: for the ball-and-urn model they were the colors of the balls selected from the
umns. We denote the individual symbols as V = {vi,va,. .., vu}.

3. The state-transition probability distribution A = {a;;} where
aj = Plgs =jlg =i, 1<ijsN 6.7

For the special case in which any state can reach any other state in a single step, we
have a;; = 0 for all 7, /. For other types of HMMs, we would have ay = 0 for one or

more (i, /) pairs.
4. The observation symbol probability distribution, B = {b;(k)}. in which

bitk) = Plo, = velge = J1, | <k <M, (6.8)

defines the symbaol distribution in state j, j = 1,2,... N,
5. The initial state distribution = = {m;} in which

m; = Plgy = il, 1 <i<N. (6.9)

=) Cﬂ'—wpqcf hafﬁcfr'rm ;A= (/4, 3,, _{rz‘)
—) Complele speciCicatiom of an Kot

HMM Generator of Observations

Given appropriate values of N, M, A, B, and m, the HMM can be used as a generator (o give
an rvati

O = {0107...07) {6.11)
(in which each observation o, is one of the symbols from V, and T is the number of
observations in the sequence) as follows:

1. Choose an initial state g, = § according to the initial state distribution 7.

2, Setr= 1.
3, Choose o, = v; according to the symbol probability distribution in state 7, i.e., by(k).

4. Transittoanew state gy41 = j according to the state-transition probability distribution
for state i, i.e., djj.
5. Setf =t + 1: return to step 3 if r < T; otherwise, terminate the procedure.

The following table shows the sequence of states and observations generated by the above
procedure:

time, [ i 2 3 4 5 6 . T
stabe q1 q2 93 T4 45 q4 ses qr
abservation T 03 03 0y o5 0 s oy

The above procedure can be used as both a generator of observations and as a model to
simulate how a given observation sequence was generated by an appropriate HMM.
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Problem 1

Giw.:ln the observation sequence O = (0, 0...or), and a model A = (4.8, 7). how do we — €la f‘l‘.{lb{rm, ’ﬂmf_;l."ﬂq
efficiently compute P{O|A), the probability of the observation sequence, given the model? HO'-F wg&{ a "“ﬂ'C(E(

Problem 2 "‘&faﬁej ey ﬂg.ﬁl’wfhz'

Given the observation sequence O = (0, 0...0r), and the model A, how do -
: o 0Ty . we choose Lnco :
a corresponding state sequence § = (qigz - .gr) that 15 oplimal in some sense (i.e., best ver ﬁﬂ L‘JJEL’ F‘rf
“explains™ the observations)?

Problem 3 ,
How do we adjust the model parameters A = (A, B, ») 1o maximize PO A)? _-'} f’f"l:{_.,".-:-' T ?‘ f Fﬂ'é [,/E.I-H
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[Solution to Problem i—Probability Evaluation

We wish to calculate the probability of the observation sequence, O = {01 0... 07} given
the model A, i.e., P{OJA). The most straightfnmard way of doing this is through enumer-
ating every possible state sequence of length T (the number of observations). There are N7

such state sequences. Consider one such fixed-state sequence
q=(qgz2-.-47) (6.12)

where ¢y is the initial state. The probability of the observation sequence O given the state

sequence of Eq. (6.12) is
r

PO}, ») = | | Plailgn A) (6.138)

=l

where we have assumed statistical indeper dence of observations. Thus we gel
P(O|q, }) = Lq,(01)  bg(02) . . . barloT). (6.13b)
The probability of such a state sequence q can be writlen as
P(gIA) = o, 80,00  « + Far-idr- (6.14)

The joint probability of O and g, i.e., the probability that O and g occur simultaneously. is
simply the product of the above two terms, i.e.

PO, glx) = P(O|q, MP(g|A). (6.15)

The probability of O (given the model) is obtained by summing this joint probability ovet
all possible state sequences q. giving :

P(OI3) = ) P(Ola, MP(GIA) (6.16
all g

= Z “q.bﬁ':“l}‘?e.qz,bq:{ﬂﬂ---ﬂqr_q-:rbdrfﬂﬂ- (6.17)
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=-—-> The Forward Procedure

Consider the forward variable (1) defined as
o (i) = P(0,02 ... 01, = {|}) (6.18)

that is, the probability of the partial observation sequence, 0402 Oy, (until time £) and
state i at time f, given the model Y We can solve for o,(i) inductively, as follows:

1. Initialization

oy (1) = mbi{o), | <i =N, (6.19)
2. Induction
N
. 1<1<T=-1
a1 () = [Z ﬂr{f}al}'] b,l{ﬂr-i-]L | _{.J E N - (6.20)
i1 -
3. Termination .
PO = Y _ arli). 6.21)
i=1

=) ﬂhf}’ ﬂ{.éﬂuf ff”a?_ Cﬂ(ﬁhfmf-‘iﬂj MEPq(eo(
(e.g., M=5 Taloo =m3000 69 onfeyvf
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ind wctiom jftp y
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Strw ctupe
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—r
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>
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OBSERVATION, 1

Figure 6.5 (a} lllustration of the sequence of operations required [or
the computation of the forward wariable a0 (b) Implementation
of the computation of o (i) in terms of a latice of observations I, and
SLALES f,



The Backward Procedure

In a similar manner, we can consider a backward variable 5,(/) defined as
Be(f) = P(0410r42 - - -O7|gr = 1, A) (6.23)
that is, the probability of the partial observation sequence from ¢ + | to the end, given state

i at time ¢ and the model A. Again we can solve for G,(f) inductively, as follows:

1. Initialization
(=1, | <i<N. (6.24})

2. Induction

N
By = 3 b0 1B (),

J=1
f=T—=1,T-2,...,1, 1ZigN (6.25)

3. (erwmine fioy P(Ofﬂ) =.§ﬁri 6‘- (0,) (?-,- (i)

—) J.q_j{ Clay gf{LEr LHE{'&M/ {"5 fﬂf’ue fﬂ‘g[Eh }
back warel cungl Crvan] are ueedled fof solvnng puwilew, 2 oof 3

SN
' t+ 1
Bt By 4yt

Figure 6.6 Sequence of operations required for the computa-
tion of the backward vanable 3(r).
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we can define the a posteriori probability variable ;[L

(i) = Plg, = |0, X) (6.26) |

that is, the probability of being in state i at time 7, given the observation sequence O,and
the model A. We can express ~;(i) in several forms, including

(i) = F{f}'r — !.l 01}'-}
PO =il
RO N

__POg=ilA 6.27)

&
> PO,q=i] A
ll=|.

Since P(0, g, = i | A} is equal to a,(i)F(i), we can write 7,(i} as

iy = 28D (628) -

S~ a)Bii)
=1

where we see that a,(i) accounts for the partial observation sequence 0 0; . . . 0 and state
i at ¢, while 5,(i) accounts for the remainder of the observation sequence 041043 - .. 0f,
given state g, = i at /.

Using =,(f), we can solve for the individually most likely state g; at time ; as

q; =g lgggﬂl'nml. 1< <T. (6.29)
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@zﬁa Frad the 55143& best gtafe Sequence
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_§ | The Viterbi Algorithm

To find the single best state sequence, = (g gz . . . gr). for the given observation sequence
0 = (0, 02...07), we need to define the quantity

(i) = admax Plg19z-. .10 §i =i, 0102...0,]A] (6.30)

that is, &{f) is the best score lfhiEhest probability) along a single path, at time f, which
accounts for the first ¢ observations and ends in state i. By induction we have

Grt1(f) = [max &) ay) - bilor41). (6.31)

Toactually retrieve the state sequence, we need to keep track of the argument that maximized
Eq. (6.31), for each r and j. We do this via the array ¥»(/). The complete procedure for
finding the best state sequence can now be stated as follows:

1. Inttialization

i1i) = mbi(ey), 1 <i<N (6.32a)
i} = 0. (6.32b)
2. Recursion
() = max (Gaglblon, = ST (6.33a)
i L ich fo=1 VELS AL 1 <j<N .
1 = N 2<t&T
w(j) = arg lrgﬁzfﬂlﬁf_lfuha.,]. 1<j<N. (6.33b)
3. Termination
P* = max [6r(7)] (6.34a)
1<iTh
gy = arg |r~I:E§c:}~.'[45Tm]' (6.34b)

4. Path (siate sequence) backtracking
gt = Palgl ) t=T-1,T=-2,...,L. (6.35)

'q(ﬂnr:ﬂm maxiwmizes P 0,9 fl) for g/ ven O enel A

® q (q,ﬁ{:‘ce (nr frtf(:'jj kaucg'ﬂcre €FFJ"CEE¢.LL(7
f'hP(E'-t- EM{S fﬁE Cﬂf-ufufq L(r*ﬂ'h
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Exer crse cl

Given the model of the coin-toss experiment used in Exercise 6.2 (i.c., three different coins)
with probabilities
State | State 2 State 3

FUH) 0.5 0.75 0.25
P(T) 0.5 .25 0.75

and with all state transition_probabilities equal to /3, and with initial probabilities equal to
1/3, Tor the observation sequence

O =(HHHHTHTTTT)

find the most likely path with the Viterbi algorithm,

Solution 6.3
Since all @y terms are equal 1o | /3, we can omit these terms {as well as the initial state

probability term), giving
hil) =05, §(2) =075 §(3) =025

The recursion for & /) gives (2 < 1 < 10)

E2(1) = (0.75)(0.5),  &(2) = (0.75)%, &2(3) = (0.75)(0.25)

S(1) = (0.75%(0.5),  &(2) = (0.75), 63(3) = (0.75)%00.25)
Sa(l) = (0.75Y%(0.5),  &a(2) = (0.75)", 54(3) = (0.75)°(0.25)
b5(1) = (0.75)%0.5), (D) = (0.75)%0.25), &s(3) = {D.75)°

Ss(1) = (0.75)%0.5),  £(2) = (0.75)5, fe(3) = (0.75)%(0.25)

&(1) = (0.75%0.5),  &(2) = (0.75)%0.25), H(3) = (0.75)
(1) = (0.75)7(0.5),  &(2) = (0.7510.25), &) = (0.75)"
&(1) = (075%0.5),  &(2) = (0.75%0.25), &(3) = (0.75)°
Sin(1) = (0.75)°(0.5), &i0(2) = (0.75)°(0.25), &io(I) = (0.75)"

This leads to a diagram (trellis) of the form:

3 =
Stite1<<<-( .i%iii;\:ii
1 =
12 3 4 5 § 7 8 g 10

Chbservation Time

Hence, the most likely siate sequence is {2,2,2,2,3,2,3,3,3,3}.
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To describe the procedure for reestimation (iterative updale and improvement) of
HMM parameters, we first define £(i, /), the probability of being in state i at time ¢, and
state § at time ¢ + 1, given the model and the observation sequence, i.e.

i) = Plge =i, qupr = J1O, M), (6.36)

The paths that satisfy the conditions required by Eq. (6.36) are illustrated in Figure 6.7.
From the definitions of the forward and backward variables, we can write £(i, j) in the form
.. _ Pl =i g4 =4, 01N
EFE:L.’} — P{ﬂ E ..:'l.}
_ ar, (1) ﬂub; (0r41)5:410J)
P(O|A)
ﬂ’:rﬁ Jaib{0e )04 () . (6.37)

~
z Z (i) aipbi(0r41 )G 1 ()

i=1 j=I

with  dgli)= P(0,0, .. 0, 35i[R)
Bf(';) - P(aﬁﬂ Oter -~ Or /?f: ¥ ’l)

| I
I |
i [
3i 5j
o | | =1
. [ Qi imH”I
. |
1 I
| |
. |
1l | | Et+'|“:'
t=1 | J | T+1 t+ 2
I

l

Figure 6.7 [llustration of the sequence of operations required for the computation
of the joint event that the system is in state 7 at time ¢ and state fattime §r + 1,
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If we sum (i) over the time index 1, we get a quantity that can be interpreted as the expected
{over time) number of times that state / is visited, or equivalently, the expected number
of transitions made from state [ (if we exclude the time slot ¢ = T from the summation).
Similarly, summation of £(i, /) over t (from ¢ = 1 tor = T — 1) can be interpreted as the
expected number of transitions from state i to state §. That is,

r—1

Z () = expected number of transitions from state i in O {6.39a)

=1
T=I
Ef,[l‘,;’} = expected number of transitions from state i to state § in 0. (6.39b)

Using the above formulas (and the concept of counting event occurrences), we
can give a method for reestimation of the parameters of an HMM. A zet of reasonable

reestimation formulas for 7, A, and B is

7; = expected frequency (number of times) in state / {6.40a)
at time (§ = 1) = (i)
cxpected number of transitions from state [ to state §
expected number of transitions from state i

=1

Y &)

T
> W)
=1

expected number of times in state j and observing symbol v,
expected number of times in state j

&2y =

(6.40b)

biik)y =

T

Z Wik J)

[

Bl SNy [:64[}:]

i"!’r{ﬂ |
e, qiven A=(A,8T) we get a wu I=(A_,§’:,j-§) with

PO ) >Pl0]A) thatis, A o5 Celler
v pepect proc Pa(q.r[' ér‘{{' couv ey geuce

The reestimation formulas of Egs. (6.40a)-(6.40c) can be derived directly by maxi-
mizing (using standard constrained optimization techniques) Baum's auxiliary function

OV, N =) P(0,q]XN) log P(O,q|A) (6.41)
q
over A, Because
QA A) = QA A1 = P(O|A) = PIO|A) (6.42)

we can maximize the function g(}.“1 A) over A to improve A’ in the sense of increasing the
likelihood P(O|A). Eventually the likelihood function converges to a eritical point if we
iterate the procedure.
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