example: coin - tossing (two possible observations)

HEADS

1-COIN MODEL (OBSERVABLE MARKOV MODEL)

O = HHTTHTHHTTH...S = 1 1 2 2 1 2 1 1 2 2 1 ... (not hidden)

hidden MM

$$P(H) = P_1$$
 $P(H) = P_2$
 $P(T) = 1-P_1$ $P(T) = 1-P_2$

2-COINS MODEL (HIDDEN MARKOV MODEL)

O = H H T T H T H H T T H ...S = 2 1 1 2 2 2 1 2 2 1 2 ...

hidden states

(c)

3-COINS MODEL (HIDDEN MARKOV MODEL)

O = HHTTHTHHTTH...S = 3 1 2 3 3 1 1 2 3 1 3 ...

P(H) $1-P_1$ $1-P_2$ $1-P_3$

Figure 6.3 Three possible Markov models that can account for the results of hidden coin-tossing experiments. (a) one-coin model, (b) two-coins model, (c) three-coins model.

(M possible observations) excemple: urn-and-ball model

N hidden states

P(RED) + b₁(1)

P(BLUE) * b₁(2)

P(GREEN) + b1(3)

P(YELLOW) = b1(4)

URN 1

P(RED)

URN 2

P(BLUE) * b₂(2)

 $P(GREEN) = b_2(3)$ P(YELLOW) = b2(4)

b₂(1)

URN N

 b_M(1) P(RED) P(BLUE) * b_N(2)

P(GREEN) + b_N(3) P(YELLOW) = bu(4)

 $P(ORANGE) = b_2(M)$ P(ORANGE) . b.(M)

P(ORANGE) . by(M)

O= {GREEN, GREEN, BLUE, RED, YELLOW, RED, BLUE }

Figure 6.4 An N-state um-and-ball model illustrating the general case of a discrete symbol HMM.

Elements of an HMM

- 1. N, the number of states in the model (states are hidden) of interest and may better suit speech applications. We label the individual states as $\{1, 2, ..., N\}$, and denote the state at time t as q_t .
- 2. M, the number of distinct observation symbols per state—i.e., the discrete alphabet size. The observation symbols correspond to the physical output of the system being modeled. For the coin-toss experiments the observation symbols were simply heads or tails; for the ball-and-urn model they were the colors of the balls selected from the urns. We denote the individual symbols as V = {v₁, v₂,...,v_M}.
- 3. The state-transition probability distribution $A = \{a_{ij}\}$ where

$$a_{ii} = P[q_{t+1} = j | q_t = i], \quad 1 \le i, j \le N.$$
 (6.7)

For the special case in which any state can reach any other state in a single step, we have $a_{ij} > 0$ for all i, j. For other types of HMMs, we would have $a_{ij} = 0$ for one or more (i, j) pairs.

The observation symbol probability distribution, B = {b_j(k)}, in which

$$b_i(k) = P[\mathbf{o}_t = \mathbf{v}_k | q_t = j], \quad 1 \le k \le M,$$
 (6.8)

defines the symbol distribution in state j, j = 1, 2, ..., N.

5. The initial state distribution $\pi = \{\pi_i\}$ in which

$$\pi_i = P[q_1 = i], \quad 1 \le i \le N.$$
 (6.9)

=> Compact notation: $\lambda = (A, B, \infty)$ -> complete specification of an HMM

HMM Generator of Observations

Given appropriate values of N, M, A, B, and π , the HMM can be used as a generator to give an observation sequence

$$O = (o_1 o_2 \dots o_T)$$
 (6.11)

(in which each observation o_t is one of the symbols from V, and T is the number of observations in the sequence) as follows:

- 1. Choose an initial state $q_1 = i$ according to the initial state distribution π .
- 2. Set t = 1.
- 3. Choose $o_i = v_k$ according to the symbol probability distribution in state i, i.e., $b_i(k)$.
- 4. Transit to a new state $q_{t+1} = j$ according to the state-transition probability distribution for state i, i.e., q_{ij} .
- 5. Set t = t + 1; return to step 3 if t < T; otherwise, terminate the procedure.

The following table shows the sequence of states and observations generated by the above procedure:

time, r	1	2	3	4	5	6	 T
state	q ₁	92	<i>q</i> ₃	94	95	96	 q_T
observation	Oι	02	03	04	05	06	 07

The above procedure can be used as both a generator of observations and as a model to simulate how a given observation sequence was generated by an appropriate HMM.

The three basic problems for Huns

Problem 1

Given the observation sequence $O = (o_1 o \dots o_r)$, and a model $\lambda = (A, B, \pi)$, how do we efficiently compute $P(O|\lambda)$, the probability of the observation sequence, given the model?

-> evaluation problem

How well a model

matches an observation?

-> uncover the hidden part

Problem 2

Given the observation sequence $O = (o_1 o \dots o_T)$, and the model λ , how do we choose a corresponding state sequence $q = (q_1 q_2 \dots q_T)$ that is optimal in some sense (i.e., best "explains" the observations)?

Problem 3

How do we adjust the model parameters $\lambda = (A, B, \pi)$ to maximize $P(O|\lambda)$?

-> training problem

example: single word recognition (one Humper word):

- · build individual word models -> Prob. 3
- · understanding model states -> e.g. change 40. of states -> Prob. 2
- · recognition of unknown word -> Pros. 1

Solution to Problem 1—Probability Evaluation

We wish to calculate the probability of the observation sequence, $O = (o_1 o \dots o_7)$, given the model λ , i.e., $P(O|\lambda)$. The most straightforward way of doing this is through enumerating every possible state sequence of length T (the number of observations). There are N^T such state sequences. Consider one such fixed-state sequence

$$q = (q_1 q_2 \dots q_T)$$
 (6.12)

where q_1 is the initial state. The probability of the observation sequence O given the state sequence of Eq. (6.12) is

$$P(\mathbf{O}|\mathbf{q}, \lambda) = \prod_{t=1}^{T} P(\mathbf{o}_{t}|q_{t}, \lambda)$$
 (6.13a)

where we have assumed statistical independence of observations. Thus we get

$$P(O|q, \lambda) = \ell_{q_1}(o_1) \cdot b_{q_2}(o_2) \dots b_{q_T}(o_T).$$
 (6.13b)

The probability of such a state sequence q can be written as

$$P(\mathbf{q}|\lambda) = \pi_{q_1} a_{q_1 q_2} a_{q_2 q_3} \dots a_{q_{T-1} q_T}$$
 (6.14)

The joint probability of O and q, i.e., the probability that O and q occur simultaneously, is simply the product of the above two terms, i.e.,

$$P(\mathbf{O}, \mathbf{q}|\lambda) = P(\mathbf{O}|\mathbf{q}, \lambda)P(\mathbf{q}|\lambda). \tag{6.15}$$

The probability of O (given the model) is obtained by summing this joint probability over all possible state sequences q, giving

$$P(\mathbf{O}|\lambda) = \sum_{\text{all } \mathbf{q}} P(\mathbf{O}|\mathbf{q}, \lambda) P(\mathbf{q}|\lambda)$$
(6.16)

$$= \sum_{q_1, q_2, \dots, q_T} \pi_{q_1} b_{q_1}(\mathbf{e}_1) a_{q_1 q_2} b_{q_2}(\mathbf{e}_2) \dots a_{q_{T-1} q_T} b_{q_T}(\mathbf{e}_T). \tag{6.17}$$

=) about 2.T.N calculations needed -> infeasible

(e.g. N=5 T=100 =>=1072 computation)

-> a more efficient algorithm is required to solve problem !

The Forward Procedure

Consider the forward variable $\alpha_l(i)$ defined as

$$\alpha_i(i) = P(o_1 o_2 \dots o_i, q_i = i | \lambda)$$
 (6.18)

that is, the probability of the partial observation sequence, $o_1 o_2 \dots o_t$ (until time t) and state i at time t, given the model λ . We can solve for $\alpha_t(i)$ inductively, as follows:

$$\alpha_1(i) = \pi_i b_i(\mathbf{o}_1), \qquad 1 \le i \le N.$$
 (6.19)

2. Induction

$$\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_{t}(i)a_{ij}\right]b_{j}(o_{t+1}), \qquad \begin{array}{c} 1 \leq t \leq T-1 \\ 1 \leq j \leq N \end{array}. \tag{6.20}$$

3. Termination

$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i). \tag{6.21}$$

=) only about N2T calculations needed

(e.g., N=5, T=100 =>=3000, 69 onless of

magnitude less they direct calculation)

Lattice (or trellis)
structure :

Figure 6.5 (a) Illustration of the sequence of operations required for the computation of the forward variable $\alpha_{t+1}(j)$. (b) Implementation of the computation of $\alpha_t(i)$ in terms of a lattice of observations t, and states i.

The Backward Procedure

In a similar manner, we can consider a backward variable $\beta_t(i)$ defined as

$$\beta_t(i) = P(\mathbf{o}_{t+1}\mathbf{o}_{t+2}\dots\mathbf{o}_T|q_t = i, \lambda)$$
 (6.23)

that is, the probability of the partial observation sequence from t+1 to the end, given state i at time t and the model λ . Again we can solve for $\beta_l(i)$ inductively, as follows:

1. Initialization

$$\beta_T(i) = 1, \quad 1 \le i \le N.$$
 (6.24)

2. Induction

$$\beta_{t}(i) = \sum_{j=1}^{N} a_{ij}b_{j}(o_{i+1})\beta_{t+1}(j),$$

$$t = T - 1, T - 2, \dots, 1, \qquad 1 \le i \le N.$$
(6.25)

3. Termination
$$P(012) = \sum_{i=1}^{N} \pi_i b_i(0_i) \beta_1(i)$$

-) just an other method to solve problem ! backward and forward are needed for solving publicum 2 and 3

Figure 6.6 Sequence of operations required for the computation of the backward variable $\beta_I(i)$.

Solution to problem 2 - "optimal" state sequence

What is "optimal"? -> there are soveral possible criteria

1) choose the states of that are individually most likely at each time t

we can define the a posteriori probability variable

$$\gamma_t(i) = P(q_t = i|O, \lambda) \tag{6.26}$$

that is, the probability of being in state i at time t, given the observation sequence O, and the model λ . We can express $\gamma_i(i)$ in several forms, including

$$\gamma_{t}(i) = P(q_{t} = i \mid O, \lambda)$$

$$= \frac{P(O, q_{t} = i \mid \lambda)}{P(O \mid \lambda)}$$

$$= \frac{P(O, q_{t} = i \mid \lambda)}{N}.$$

$$\sum_{i=1}^{N} P(O, q_{t} = i \mid \lambda)$$

$$\sum_{i=1}^{N} P(O, q_{t} = i \mid \lambda)$$
(6.27)

Since $P(\mathbf{O}, q_t = i \mid \lambda)$ is equal to $\alpha_t(i)\beta_t(i)$, we can write $\gamma_t(i)$ as

$$\gamma_t(i) = \frac{\alpha_t(i)\beta_t(i)}{\sum_{i=1}^{N} \alpha_t(i)\beta_t(i)}$$
(6.28)

where we see that $\alpha_t(i)$ accounts for the partial observation sequence $\alpha_1 \alpha_2 \dots \alpha_t$ and state i at t, while $\beta_t(i)$ accounts for the remainder of the observation sequence $\alpha_{t+1}\alpha_{t+2}\dots\alpha_t$, given state $\alpha_t = i$ at t.

Using $\gamma_t(i)$, we can solve for the individually most likely state q_i^* at time t_i as

$$q_t^* = \arg\min_{1 \le i \le N} [\gamma_t(i)], \qquad 1 \le t \le T.$$
 (6.29)

-) problem with this criterion

given ais = 0 for some i and i

-) we may get an invalid state sequence

better optimality criterion: 2) to find the single best state sequence (most widely used criterion)

The

The Viterbi Algorithm

To find the single best state sequence, $\mathbf{q} = (q_1 \, q_2 \dots q_T)$, for the given observation sequence $\mathbf{O} = (\mathbf{o}_1 \, \mathbf{o}_2 \dots \mathbf{o}_T)$, we need to define the quantity

$$\delta_t(i) = \max_{q_1, q_2, \dots, q_{t-1}} P[q_1 q_2 \dots q_{t-1}, \ q_t = i, \ o_1 o_2 \dots o_t | \lambda]$$
 (6.30)

that is, $\delta_t(i)$ is the best score (highest probability) along a single path, at time t, which accounts for the first t observations and ends in state i. By induction we have

$$\delta_{t+1}(j) = [\max_{i} \delta_{t}(i) a_{ij}] \cdot b_{j}(o_{t+1}).$$
 (6.31)

To actually retrieve the state sequence, we need to keep track of the argument that maximized Eq. (6.31), for each t and j. We do this via the array $\psi_t(j)$. The complete procedure for finding the best state sequence can now be stated as follows:

1. Initialization

$$\delta_1(i) = \pi_i b_i(o_1), \quad 1 \le i \le N$$
 (6.32a)

$$\psi_1(i) = 0.$$
 (6.32b)

2. Recursion

$$\delta_t(j) = \max_{1 \le i \le N} [\delta_{t-1}(i) \, a_{ij}] b_j(\mathbf{o}_t), \qquad \begin{aligned} 2 \le t \le T \\ 1 \le j \le N \end{aligned}$$
(6.33a)

$$\psi_t(j) = \arg \max_{1 \le i \le N} [\delta_{t-1}(i) a_{ij}], \qquad 2 \le t \le T \\ 1 \le j \le N.$$
 (6.33b)

3. Termination

$$P^* = \max_{1 \le i \le N} [\delta_T(i)] \tag{6.34a}$$

$$q_T^* = \arg \max_{1 \le i \le N} [\delta_T(i)]. \tag{6.34b}$$

Path (state sequence) backtracking

$$q_i^* = \psi_{i+1}(q_{i+1}^*), \qquad i = T-1, T-2, ..., 1.$$
 (6.35)

- · algorithm maximizes P(0,9/2) for given 0 and 2
- · a lattice (or trellis) structure efficiently implements the computation
- · about NoT calculations are needed

Exercise 2

Given the model of the coin-toss experiment used in Exercise 6.2 (i.e., three different coins) with probabilities

	State I	State 2	State 3
P(H)	0.5	0.75	0.25
P(T)	0.5	0.25	0.75

and with all state transition probabilities equal to 1/3, and with initial probabilities equal to 1/3, for the observation sequence

$$O = (HHHHHTHTTTT)$$

find the most likely path with the Viterbi algorithm.

Solution 6.3

Since all a_{ij} terms are equal to 1/3, we can omit these terms (as well as the initial state probability term), giving

$$\delta_1(1) = 0.5$$
, $\delta_1(2) = 0.75$, $\delta_1(3) = 0.25$.

The recursion for $\delta_t(j)$ gives $(2 \le t \le 10)$

$$\begin{array}{lll} \delta_2(1) = (0.75)(0.5), & \delta_2(2) = (0.75)^2, & \delta_2(3) = (0.75)(0.25) \\ \delta_3(1) = (0.75)^2(0.5), & \delta_3(2) = (0.75)^3, & \delta_3(3) = (0.75)^2(0.25) \\ \delta_4(1) = (0.75)^3(0.5), & \delta_4(2) = (0.75)^4, & \delta_4(3) = (0.75)^3(0.25) \\ \delta_5(1) = (0.75)^4(0.5), & \delta_5(2) = (0.75)^4(0.25), & \delta_5(3) = (0.75)^5 \\ \delta_6(1) = (0.75)^5(0.5), & \delta_6(2) = (0.75)^6, & \delta_6(3) = (0.75)^5(0.25) \\ \delta_7(1) = (0.75)^6(0.5), & \delta_7(2) = (0.75)^6(0.25), & \delta_7(3) = (0.75)^7 \\ \delta_8(1) = (0.75)^7(0.5), & \delta_8(2) = (0.75)^7(0.25), & \delta_8(3) = (0.75)^8 \\ \delta_9(1) = (0.75)^8(0.5), & \delta_9(2) = (0.75)^8(0.25), & \delta_9(3) = (0.75)^9 \\ \delta_{10}(1) = (0.75)^9(0.5), & \delta_{10}(2) = (0.75)^9(0.25), & \delta_{10}(3) = (0.75)^{10} \end{array}$$

This leads to a diagram (trellis) of the form:

Hence, the most likely state sequence is {2, 2, 2, 2, 3, 2, 3, 3, 3, 3}.

Solution to problem 3 - Parameter estimation maximize P(012) for given $0 \rightarrow find optimal <math>\lambda = (A, B, 92)$ (unknown how to do this)

but: choose & such that P(OIX) is locally maximized -> Baum-Welch method (iferative procedure)

To describe the procedure for reestimation (iterative update and improvement) of HMM parameters, we first define $\xi_i(i,j)$, the probability of being in state i at time t, and state j at time t + 1, given the model and the observation sequence, i.e.

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j|0, \lambda).$$
 (6.36)

The paths that satisfy the conditions required by Eq. (6.36) are illustrated in Figure 6.7. From the definitions of the forward and backward variables, we can write $\xi_l(i,j)$ in the form

$$\xi_{t}(i,j) = \frac{P(q_{t} = i, q_{t+1} = j, O | \lambda)}{P(O | \lambda)}$$

$$= \frac{\alpha_{t}(i) a_{ij}b_{j}(\mathbf{o}_{t+1})\beta_{t+1}(j)}{P(O | \lambda)}$$

$$= \frac{\alpha_{t}(i) a_{ij}b_{j}(\mathbf{o}_{t+1})\beta_{t+1}(j)}{\sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{t}(i) a_{ij}b_{j}(\mathbf{o}_{t+1})\beta_{t+1}(j)}.$$
(6.37)

with
$$a_{t}(i) = P(o_{i}, o_{2} ... o_{t}, q_{t} = i/2)$$

 $B_{t}(i) = P(o_{t+1}, o_{t+2} ... o_{r}|q_{t} = i, \lambda)$

Figure 6.7 Illustration of the sequence of operations required for the computation of the joint event that the system is in state i at time t and state j at time t + 1.

$$\gamma_i(i) = \sum_{j=1}^N \xi_i(i,j) = P(q_t = i \mid 0, \lambda)$$
 (6.38)

If we sum $\gamma_t(i)$ over the time index t, we get a quantity that can be interpreted as the expected (over time) number of times that state i is visited, or equivalently, the expected number of transitions made from state i (if we exclude the time slot t = T from the summation). Similarly, summation of $\xi_t(i,j)$ over t (from t = 1 to t = T - 1) can be interpreted as the expected number of transitions from state i to state j. That is,

$$\sum_{t=1}^{T-1} \gamma_t(i) = \text{expected number of transitions from state } i \text{ in } O$$
 (6.39a)

$$\sum_{i=1}^{T-1} \xi_i(i,j) = \text{expected number of transitions from state } i \text{ to state } j \text{ in O.} \quad (6.39b)$$

Using the above formulas (and the concept of counting event occurrences), we can give a method for reestimation of the parameters of an HMM. A set of reasonable reestimation formulas for π , A, and B is

$$\bar{\pi}_j$$
 = expected frequency (number of times) in state i (6.40a) at time $(t = 1) = \gamma_1(i)$

 $\bar{a}_{ij} = \frac{\text{expected number of transitions from state } i \text{ to state } j}{\text{expected number of transitions from state } i}$

$$= \frac{\sum_{i=1}^{T-1} \xi_i(i,j)}{\sum_{i=1}^{T-1} \gamma_i(i)}$$
(6.40b)

 $\bar{b}_j(k) = \frac{\text{expected number of times in state } j \text{ and observing symbol } \mathbf{v}_k}{\text{expected number of times in state } j}$

$$= \frac{\sum_{i=1}^{T} \gamma_i(j)}{\sum_{i=1}^{T} \gamma_i(j)}.$$

$$= \frac{\sum_{i=1}^{T} \gamma_i(j)}{\sum_{i=1}^{T} \gamma_i(j)}.$$
(6.40c)

i.e., given $\lambda = (A,B,\pi)$ we get a new $\overline{\lambda} = (\overline{A},\overline{B},\overline{\pi})$ with $P(0|\overline{\lambda}) > P(0|\lambda)$ that is, $\overline{\lambda}$ is better repeat procedure till convergence

The reestimation formulas of Eqs. (6.40a)–(6.40c) can be derived directly by maximizing (using standard constrained optimization techniques) Baum's auxiliary function

$$Q(\lambda', \lambda) = \sum_{\mathbf{q}} P(\mathbf{O}, \mathbf{q} | \lambda') \log P(\mathbf{O}, \mathbf{q} | \lambda)$$
(6.41)

over \(\lambda\). Because

$$Q(\lambda', \lambda) \ge Q(\lambda', \lambda') \Rightarrow P(O|\lambda) \ge P(O|\lambda')$$
 (6.42)

we can maximize the function $Q(\lambda', \lambda)$ over λ to improve λ' in the sense of increasing the likelihood $P(O|\lambda)$. Eventually the likelihood function converges to a critical point if we iterate the procedure.

· Note: stochastic constraints of the HMM parameters 2 are automatically incorporated at each iteration